La geometría euclidiana es un sistema matemático atribuido al antiguo matemático griego Euclides, que describió en su libro de texto sobre geometría: Los Elementos. El enfoque de Euclides consiste en asumir un pequeño conjunto de axiomas (postulados) intuitivamente atractivos y deducir muchas otras proposiciones (teoremas) a partir de ellos. Aunque muchos de los resultados de Euclides se habían expuesto anteriormente, Euclides fue el primero en organizar estas proposiciones en un sistema lógico en el que cada resultado se prueba a partir de axiomas y teoremas previamente probados, aunque, durante más de dos mil años, el adjetivo “euclidiano” fue innecesario porque no se había concebido otro tipo de geometría.
Detalle de La escuela de Atenas de Rafael que muestra a un matemático griego, quizás representando a Euclides o Arquímedes, usando un compás para dibujar una construcción geométrica.
La geometría euclidiana,[1] euclídea o parabólica[2] es el estudio de las propiedades geométricas de los espacios euclídeos. Es aquella que estudia las propiedades geométricas del plano afín euclídeo real y del espacio afín euclídeo tridimensional real mediante el método sintético, introduciendo los cinco postulados de Euclides.
En ocasiones los matemáticos usan las expresiones geometría euclídea o geometría euclidiana para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia son sinónimos de geometría plana o de geometría clásica.
También es común (abusando del lenguaje) decir que una geometría es euclidiana si no es no euclidiana, es decir, si en dicha geometría se verifica el quinto postulado de Euclides. Esta denominación está cada vez más en desuso, debido a la pérdida de interés que va teniendo el tema de la posibilidad de trazar paralelas a una recta desde un punto exterior a la misma, los axiomas de Euclides parecían tan intuitivamente obvios (con la posible excepción del postulado de las paralelas) que cualquier teorema demostrado a partir de ellos se consideraba verdadero en un sentido absoluto, a menudo metafísico.
Hoy, sin embargo, se conocen muchas otras geometrías no euclidianas auto-consistentes, las primeras se descubrieron a principios del siglo xix. Una implicación de la teoría de la relatividad general de Albert Einstein es que el espacio físico en sí mismo no es euclidiano, y el espacio euclidiano es una buena aproximación para él solo en distancias cortas (en relación con la fuerza del campo gravitatorio).